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Preface 

This technical report relates to previous works that explored the use of spatial 
verification techniques with a grid-to-grid approach for the assessment of the 
Weather Running Estimate–Nowcast (WRE–N) model. However, this report 
describes the results obtained when a traditional, grid-to-point approach was used 
to verify the WRE-N model. Portions of this report’s content appeared in  
ARL-TR-78491 and, before it, in ARL-TR-7751.2

                                                   
1 Raby JW. Application of a fuzzy verification technique for assessment of the Weather Running 

Estimate–Nowcast (WRE–N) model. White Sands Missile Range (NM): Army Research Laboratory (US); 
2016 Oct. Report No.: ARL-TR-7849. 

2 Raby JW, Cai H. Verification of spatial forecasts of continuous meteorological variables using 
categorical and object-based methods. White Sands Missile Range (NM): Army Research Laboratory (US); 
2016 Aug. Report No.: ARL-TR-7751. 
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Executive Summary 

The Weather Research and Forecasting Model (WRF) is a numerical  
weather-prediction model that has been used for many applications, including My 
Weather Impacts Decision Aid. WRF is maintained by the National Center for 
Atmospheric Research, which has developed a suite of Model Evaluation Tools 
(MET) to evaluate the accuracy of WRF forecasts using observations of 
meteorological variables such as temperature, relative humidity, and wind.  

In this technical report, we discuss our use of the MET to assess the errors 
aggregated over selected domains of the Weather Running Estimate–Nowcast 
(WRE–N) model, which uses the Advanced Research WRF (commonly referred to 
as WRF–ARW) as its core. In addition, the domain-level errors were calculated for 
the Global Forecast System (GFS) model that is used to initialize the WRE–N. The 
WRE–N was developed to address the US Army requirement to provide high-
resolution weather forecasting to resolve atmospheric features with wavelengths on 
the order of 5 km or less. This requires models that operate on a model grid spacing 
of about 1 km or less in the finest, or most resolved, domain. 

The output used for this study was generated using 3 different configurations of the 
WRE–N that were run over 2 different triple-nested domains centered near San 
Diego, California. The grid spacing of the WRE–N was largest in the outer domain 
and smallest in the innermost domain. The San Diego area contains a mixture of 
urban, suburban, agricultural, and mountainous terrain types along with a rich array 
of observational data with which to conduct domain-level assessments. We selected 
5 case-study days in February–March 2012 with varied synoptic weather 
conditions.  

In this study we generated the traditional grid-to-point, continuous error statistics 
for each of the domains separately to maximize the number of observations used in 
the domain-level statistics for the 3 model grids. We also scored the 3 different 
grids of the WRE–N over the innermost domain to compare the errors for each grid 
spacing.  

In this study, we also compared the error statistics for the WRE–N run with the 
Four-Dimensional Data Assimilation (FDDA) technique that incorporates 
observations into the model with runs that did not use the FDDA to evaluate the 
value added by the technique in terms of the error statistics. The error statistics for 
2 different configurations of the WRE–N run over the same triple nest were 
compared. 
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The results of the study suggest the observation assimilation improves the forecast 
under certain conditions, but the value added of smaller grid spacing cannot be 
determined. The results show the WRE–N generally performs better than the GFS 
model with some limitations. More comprehensive verification studies are needed 
to conclusively determine the value added by varying configurations of the  
WRE–N.  
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1. Introduction and Background 

As computing technology has advanced, the weather forecasting task—once the 
primary role of a human forecaster in theater—has shifted to computerized 
Numerical Weather Prediction (NWP) models. Scientists around the world have 
used the Weather Research and Forecasting model (WRF) extensively for many 
applications (Raby 2016; Raby and Cai 2016). In this study, we have used the 
Advanced Research version of WRF  (Skamarock et al. 2008) that we abbreviate 
as WRF–ARW. The WRF–ARW includes Four-Dimensional Data Assimilation 
(FDDA) techniques that can be used to incorporate observations into the model so 
that forecast quality is improved (Stauffer and Seaman 1994; Deng et al. 2009). The 
US Army Research Laboratory (ARL) uses WRF–ARW as the core of its Weather 
Running Estimate–Nowcast (WRE–N) weather-forecasting model. 

The Army requires high-resolution weather forecasting to model atmospheric 
features with wavelengths on the order of 5 km or less, which imposes a 
requirement for NWP to operate on a model grid spacing on the order of 1 km or 
less in the finest, or most resolved, domain in order to resolve weather phenomena 
of interest to the Soldier in theater. The atmospheric flows of interest to the Army 
include mountain/valley breezes, sea breezes, and other flows induced by 
differences in land-surface characteristics. High-resolution NWP forecasts need to 
be validated against observations before their outputs can be used by applications 
such as the My Weather Impacts Decision Aid (MyWIDA) developed by Brandt et 
al. (2013). Weather-forecast validation has always been of interest to the civilian 
and military weather-forecasting community; see, for example, the reviews by 
Ebert et al. (2013) and Casati et al. (2008) or the guides by Jolliffe and Stephenson 
(2011) or Wilks (2011). The validation of the models, especially high-resolution 
NWP, has proven to be especially difficult when addressing small temporal and 
spatial scales (NRC 2010) that characterize NWP for use in Army applications. 

The WRF model is maintained by the National Center for Atmospheric Research 
(NCAR), which has also developed a suite of Model Evaluation Tools (MET) 
(NCAR 2013) to evaluate WRF–ARW performance. MET was developed at 
NCAR through a grant from the US Air Force’s 557th Weather Wing (formerly the 
Air Force Weather Agency). NCAR is sponsored by the National Science 
Foundation. MET Point-Stat performs traditional grid-to-point verification, while 
MET Grid-Stat performs grid-to-grid neighborhood verification to account for the 
uncertainty inherent in high-resolution forecasting. MET Method for Object-based 
Diagnostic Evaluation has been used to develop techniques for object-based spatial 
verification of high-resolution forecast grids of meteorological variables.  
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ARL has employed MET Point-Stat in prior assessments such as that of Raby et al. 
(2012), who evaluated 2 models to arrive at domain-level conclusions about the 
various strengths and weaknesses of these models and their accuracies. Point-Stat 
proved useful as an assessment tool for the 2 models over a regional domain; plans 
were formulated to expand its use to perform comparisons of various configurations 
and grid spacings of the WRE–N. The WRE–N was run by 3 modelers (A–Reen, 
B–Passner, and C–Dumais) using 3 different sets of parameterizations over 2 
different sets of triple-nested domains, each at a different grid spacing, with and 
without FDDA, which provided a robust data set of model output for analysis. In 
addition, Point-Stat was run on the half-degree-spacing Global Forecast System 
(GFS) initialization grids used for the WRE–N to provide data for error 
intercomparisons. 

This study provides domain-level assessments of the WRE–N and the GFS 
initialization grid; these give insight into the value added by the WRE–N, the 
FDDA, and reduced grid spacing in terms of traditional error statistics as well as 
characterizations of the temporal variability of these statistics throughout the 
model’s time domain by intercomparing differing model configurations to reveal 
relative strengths and weaknesses. Our study domain was located in the San Diego, 
California, region, which we chose because of its varied terrain and large number 
of weather-observing stations. We chose 5 case-study days with varied synoptic 
conditions in February–March 2012.  

2. Domain and Model 

The ARL WRE–N (Dumais et al. 2004; Dumais et al. 2013) has been designed as 
a convection-allowing application of the WRF–ARW model (Skamarock et al. 
2008) with an observation-nudging FDDA option (Deng et al. 2009; Liu et al. 
2005). For this investigation, the WRE–N was configured to run over 2 multinest 
sets of domains to produce a fine inner mesh with 1- and 1.75-km grid spacing; 
also, it leveraged an external global model for cold-start initial conditions and time-
dependent lateral boundary conditions for the outermost nest. Table 1 describes the 
dimensions of the 2 sets of domains. This global model for ARL development and 
testing has been the National Center for Environmental Prediction’s GFS model 
(EMC 2003). The WRE–N is envisioned to be a rapid-update, cycling application 
of WRF–ARW with FDDA and optimally could refresh itself at intervals up to 
hourly, dependent upon the observation network (Dumais and Reen 2013). 
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Table 1 WRE-N triple-nested domain dimensions 

Modeler East–West 
dimension (km) 

North–South 
dimension (km) 

Grid spacing (km) 

Reen, Passner 1575 1575 9 
 723 723 3 
 127 127 1 
Dumais 1780 1780 15.75 
 761 761 5.25 
 506 506 1.75 

 
For this study, the model runs had a base time of 1200 coordinated universal time 
(UTC) and produced output for each hour from 1200 UTC to 0600 UTC of the 
following day for a total of 19 model outputs used on each of 5 days in  
February–March 2012. Figure 1 depicts the modeling domains. The domains 
outlined in yellow are for the Dumais model and in red for the Reen and Passner 
models. 

 

Fig. 1 Two triple-nested model domains; each domain’s center is coincident and both 
nested configurations are centered near San Diego, California (Google Earth 2016) 
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2.1 Observations 

The initial conditions were constructed by starting with the GFS data as the first 
guess for an analysis using observations. Most observations were obtained from the 
Meteorological Assimilation Data Ingest System (MADIS) at the National Oceanic 
and Atmospheric Administration (NOAA 2014), except for the Tropospheric 
Airborne Meteorological Data Reporting (TAMDAR; Daniels et al. 2016) 
observations, which were obtained from AirDat, LLC. The MADIS database 
included standard surface observations, mesonet∗ surface observations, maritime 
surface observations, wind-profiler measurements, rawinsonde soundings, and 
Aircraft Communications Addressing and Reporting System (ACARS) data. Use 
and reject lists were obtained from developers of the Real-Time Mesoscale 
Analysis (RTMA) system (De Pondeca et al. 2011), and these were used to filter 
MADIS mesonet observations. This quality-assurance evaluation is especially 
important given the greater tendency of mesonet observations to be poorly sited 
compared with other, more standard, surface observations.  

The Obsgrid component of WRF was used for quality control of all observations. 
This included gross-error checks, comparison of observations to a background field 
(here GFS), and comparison of observations to nearby observations. We modified 
Obsgrid to allow for single-level observations such as the TAMDAR and ACARS 
data to be more effectively compared with the GFS background field. The quality-
controlled observations were output in hourly “little_r”-formatted text files for use 
as ground-truth data for model assessment. We employed observation nudging to 
the observations from these same sources for the period of 1200–1800 UTC, 
followed by 1-h ramping down of the nudging from 1800 to 1900 UTC, during 
which time no new observations are assimilated. The forecast period thus begins at 
18 UTC because no observations after this time are assimilated.  

2.2 Parameterizations 

For the parameterization of turbulence in WRE–N, a modified version of the 
Mellor–Yamada–Janjić (MYJ) planetary boundary layer (Janjić 1994) scheme was 
used. This modification decreases the background turbulent kinetic energy and 
alters the diagnosis of the boundary-layer depth used for model output and data 
assimilation (Reen et al. 2014). The WRF single-moment, 5-class microphysics 
parameterization is used on all domains (Hong et al. 2004), while the Kain–Fritsch 
(Kain 2004) cumulus parameterization is used only on the 9-km and 15.75-km outer 
domains. For radiation, the Rapid Radiative Transfer Model (RRTM) 
parameterization (Mlawer et al. 1997) is used for long-wave radiation and the 
                                                   

∗ A network of automated meteorological observation stations. 
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Dudhia (1989) scheme for shortwave radiation. The Noah land-surface model 
(Chen and Dudhia 2001a, 2001b) is used. Additional references and other details 
for these parameterization schemes are available from Skamarock et al. (2008). 
Table 2 lists the WRE–N configurations.  

Table 2 WRE-N configurations 

Configuration A–Reen 
(Y/N?) 

B–Passner 
(Y/N?) 

C–Dumais 
(Y/N?) 

WRF–ARW V3.4.1 Yes Yes Yes 
Obs-nudging FDDA Yes Yes Yes 
Multinest (9/3/1km) Yes Yes No 
Multinest (15.75/5.25/1.75km) No No Yes 
Cold start IC/LBC/Obs–adjusted 
GFS 

Yes Yes No 

MADIS observations (FDDA) Yes Yes Yes 
TAMDAR observations (FDDA) Yes Yes Yes 
Ship/buoy observations (FDDA) Yes Yes Yes 
Filter obs (use/reject) (FDDA) Yes Yes Yes 
RUNWPSPLUS QC (FDDA) Yes Yes Yes 
Obs-nudge rad 180,90,45 Yes No No 
Obs-nudge rad 90,45,20 No Yes No 
Obs-nudge rad 120,60,20 No No Yes 
MYJ–PBL Scheme (modified) Yes Yes Yes 
WRF, sgl-moment, 5-class mp Yes Yes Yes 
Option 8—microphysics  No Yes Yes 
Option 4—microphysics Yes No No 
End FDDA 360 min Yes Yes Yes 
End FDDA 420 min No No No 
Kain–Fritsch Cum Param (outer 
dom) 

Yes Yes Yes 

RRTM long-wave rad (Mlawer) Yes Yes Yes 
Shortwave rad (Dudhia) Yes Yes Yes 
Noah land-surface model Yes Yes Yes 
Fix for nudge to low water vapor Yes Yes Yes 
Model Top 50hPa Yes No No 
Model Top 10hPa No Yes Yes 
Feedback on No Yes Yes 
Obs weighting function 4E-4 No Yes Yes 
Obs weighting function 8E-4 Yes No No 
57 vertical levels  Yes Yes Yes 
18-s time step Yes Yes No 
48-s time step No No Yes 

2.3 Case-Study Days 

The case-study days were selected on the basis of the prevailing synoptic weather 
conditions over the nested domains. Table 3 has short descriptions of these 
conditions is provided in Table 3. 
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Table 3 Synoptic conditions for the case-study days considered 

Case Dates (all 2012) Description 
1 February 07–08 Upper-level trough moved onshore, which led to widespread 

precipitation in the region. 
2 February 09–10 Quiescent weather was in place with a 500-hPa ridge 

centered over central California at 1200 UTC. 
3 February 16–17 An upper-level low located near the California–Arizona 

border with Mexico at 1200 UTC brought precipitation to 
that portion of the domain. This pattern moved south and 
east over the course of the day. 

4 March 01–02 A weak shortwave trough resulted in precipitation in 
northern California at the beginning of the period that spread 
to Nevada, then moved southward and decreased in 
coverage. 

5 March 05–06 Widespread high-level cloudiness due to weak upper-level 
low pressure but very limited precipitation. 

3. Data Preparation Using MET 

The model and observational data were preprocessed into the formats required by 
MET Point-Stat. The WRE-N model’s output data were converted from native 
NetCDF formatted files to hourly gridded binary files (GRIB), Edition 1, by the 
WRF Unified Post Processor, which destaggers the data onto an Arakawa-A Grid. 
Hourly MADIS observations files in little_r format were converted into NetCDF 
files using a MET utility program. We used MET Point-Stat to generate the 
traditional, grid-to-point continuous error statistics for surface and upper air for 
these meteorological variables: temperature (TMP), dew-point temperature (DPT), 
relative humidity (RH), u-component (U) and v-component (V) winds, and wind 
speed and direction. Point-Stat computes matched-pair model values for the 
location of each observation from the MADIS data set for each forecast hour. To 
select observations closest to the top of the hour, and to eliminate multiple 
observations for each hour, we set the duplicate handling of Point-Stat to 
“SINGLE”. For each observation location, MET derives the forecast value 
corresponding to a given location by a distance-weighted mean interpolation from 
the enclosing grid points. In the vertical, no interpolation is used if the forecast and 
observation are at the same vertical level. If the levels are different, then the forecast 
value is interpolated to the level of the observation. MET Point-Stat produces a 
single matched-pair output text file and a single continuous-error statistics text file 
for each model output hour considered. For this study we used the MADIS 
parameters available at 2 m above the ground (AGL), which were TMP, RH, and 
DPT. The 10-m-AGL parameters were U and V.  
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4. Data Analysis  

4.1 Value Added to WRE–N by FDDA at 1.75-km Grid Spacing 

Our first step was to examine the MET model-performance statistics for the WRE–
N, which was run with and without the FDDA in order to show the value added by 
the FDDA. The error values were computed from all matched pairs available for 
each hour in the Dumais 1.75-km domain, which varies (depending on the variable) 
over the 18-h time domain of the model. The errors for the period 1200–1800 UTC 
characterize the performance of the model during the assimilation phase. Figure 2 
is a time-series display of the errors in the 2-m-AGL TMP’s mean error (ME: bias) 
and root-mean-square error (RMSE) for the Dumais 1.75-km WRE–N for Cases 1 
and 5.  

 

Fig. 2 Bias and RMSE errors for WRE–N with and without FDDA for 2-m-AGL TMP (in 
degrees Kelvin [K]) 

The error values were computed from all matched pairs available for each hour, 
which ranged from 625 to 733 over the 18-h time domain of the model for Case 1 
and 539 to 754 for Case 5. There are small differences between the errors for the 
WRE–N with FDDA (designated as “FDDA” in the plot) and the WRE–N without 
FDDA (designated as “NOFDDA” in the plot) over the duration of the assimilation 
phase. The difference, which is nil at 1200 UTC, when the WRE–N is effectively 
the same as the GFS at the beginning of the assimilation phase, shows the FDDA 
performs slightly better than NOFDDA during the assimilation phase. Afterward, 
the difference is almost nil. The trends in the errors for FDDA and NOFDDA are 
very similar, especially during the forecast phase. 
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Figure 3 is a time-series display of the 2-m-AGL DPT’s ME and RMSE errors for 
the Dumais 1.75-km WRE–N for Cases 1 and 5. 

 

Fig. 3 Bias and RMSE errors for WRE–N with and without FDDA for 2-m-AGL DPT (K) 

The error values were computed from all matched pairs available for each hour, 
which ranged from 542 to 597 over the 18-h time domain of the model for Case 1 
and 430 to 578 for Case 5. There are larger differences between the errors for the 
WRE–N with FDDA and NOFDDA over the duration of the assimilation phase 
than were seen for TMP. The difference, which is nil at 1200 UTC, when the  
WRE–N is effectively the same as the GFS at the beginning of the assimilation 
phase, shows the FDDA performs better than NOFDDA during the assimilation 
phase. Afterward, the difference is almost nil. The trends in the errors for FDDA 
and NOFDDA are very similar, especially during the forecast phase. 

Figure 4 is a time-series display of the 10-m-AGL U-component wind’s ME and 
RMSE errors for the Dumais 1.75-km WRE–N for Cases 1 and 5. 
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Fig. 4 Bias and RMSE errors for WRE–N with and without FDDA for 10-m-AGL U (m/s) 

The error values were computed from all matched pairs available for each hour, 
which ranged from 212 to 252 over the 18-h time domain of the model for Case 1 
and 207 to 234 for Case 5. There are modest differences between the errors for the 
WRE–N with FDDA and NOFDDA over the duration of the assimilation phase for 
Case 1 but not for Case 5. For Case 1, the difference, which is nil at 1200 UTC 
when the WRE–N is effectively the same as the GFS at the beginning of the 
assimilation phase, shows the FDDA performs better than NOFDDA during the 
assimilation phase. Afterward, the difference is almost nil. For Case 5, the errors 
for FDDA and NOFDDA are effectively the same throughout the model’s time 
domain. The trends in the errors for FDDA and NOFDDA for both cases are very 
similar, especially during the forecast phase. 

Figure 5 is a time-series display of the 10-m-AGL V-component wind’s ME and 
RMSE errors for the Dumais 1.75-km WRE-N for Cases 1 and 5. 
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Fig. 5 Bias and RMSE errors for WRE–N with and without FDDA for 10-m-AGL V (m/s) 

The error values were computed from all matched pairs available for each hour, 
which ranged from 212 to 252 over the 18-h time domain of the model for Case 1 
and 207 to 234 for Case 5. There are small differences between the errors for the 
WRE–N with FDDA and NOFDDA over the duration of the assimilation phase for 
both cases. For Case 1, the differences—nil at 1200 UTC, when the WRE–N is 
effectively the same as the GFS at the beginning of the assimilation phase—show 
the FDDA performs slightly better than NOFDDA, but these differences do not 
decrease markedly following the assimilation phase as was the case for the other 
variables. On the other hand, for Case 5 the FDDA and NOFDDA differences are 
again small but decrease following the assimilation phase, which has been the case 
for the other variables. Afterward, the difference is almost nil. The trends in the 
errors for FDDA and NOFDDA for both cases are very similar, especially during 
the forecast phase. 

4.2 Value Added to WRE–N by FDDA at 5.25- and 1.75-km Grid 
Spacing 

The next step of our analysis was to examine the differences between FDDA and 
NOFDDA for the Dumais WRE–N over the 5.25-km domain and the 1.75-km 
domain for the same case, which was Case 4, to see any differences that are 
attributable to grid spacing.  

Figure 6 is a time-series display of the 2-m-AGL TMP’s ME and RMSE errors for 
the Dumais 5.25- and 1.75-km WRE–N for Case 4. 
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Fig. 6 Bias and RMSE errors for WRE–N with and without FDDA for 2-m-AGL TMP 
(K) 

The error values were computed from all matched pairs available for each hour, 
which ranged from 823 to 987 over the 18-h time domain of the model for the  
5.25-km domain and 628 to 759 for the 1.75-km domain. There are small 
differences between the errors for the WRE–N with FDDA and NOFDDA over the 
duration of the assimilation phase for both domains. For both domains, the 
differences—nil at 1200 UTC, when the WRE–N is effectively the same as the GFS 
at the beginning of the assimilation phase—show the FDDA performs slightly 
better than NOFDDA in terms of the RMSE, but these differences do not decrease 
markedly following the assimilation phase as was the case for the other variables. 
The difference in RMSE decreases much later in the forecast phase. For the bias, 
the FDDA and NOFDDA differences are very small with no clear signal that FDDA 
was better than the NOFDDA. The trends in the errors for FDDA and NOFDDA 
for both domains are very similar throughout the entire time domain with no 
significant differences attributable to grid spacing. 

Figure 7 is a time-series display of the 2-m-AGL DPT’s ME RMSE errors for the 
Dumais 5.25- and 1.75-km WRE–N for Case 4. 
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Fig. 7 Bias and RMSE errors for WRE–N with and without FDDA for 2-m-AGL DPT (K) 

The error values were computed from all matched pairs available for each hour, 
which ranged from 679 to 757 over the 18-h time domain of the model for the  
5.25-km domain and 546 to 611 for the 1.75-km domain. There are small 
differences between the bias errors for the WRE–N with FDDA and NOFDDA over 
most of the model’s time domain for both domains. However, the difference for 
RMSE for both domains is larger than any seen so far in the analysis. For both 
domains, the differences in RMSE—nil at 1200 UTC, when the WRE–N is 
effectively the same as the GFS at the beginning of the assimilation phase—show 
the FDDA performs better than NOFDDA for most of the model run. For the bias, 
the FDDA and NOFDDA differences are very small with no clear signal that FDDA 
was better than the NOFDDA. The trends in the errors for FDDA and NOFDDA 
for both domains are very similar throughout the entire time domain with no 
significant differences attributable to grid spacing. 

Figure 8 is a time-series display of the 10-m-AGL U’s ME and RMSE errors for 
the Dumais 5.25- and 1.75-km WRE–N for Case 4. 
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Fig. 8 Bias and RMSE errors for WRE–N with and without FDDA for 10-m-AGL U (m/s) 

The error values were computed from all matched pairs available for each hour, 
which ranged from 231 to 267 over the 18-h time domain of the model for the  
5.25-km domain and 199 to 237 for the 1.75-km domain. The differences between 
the bias and RMSE errors for the WRE–N with FDDA and NOFDDA vary between 
nil to moderate over the entire model’s time domain for both domains. The pattern 
of larger differences being confined only to the assimilation phase observed 
previously is not the case here. For both domains, the differences in RMSE—nil at 
1200 UTC, when the WRE–N is effectively the same as the GFS at the beginning 
of the assimilation phase—show the FDDA performs better than NOFDDA for 
most of the model’s run. For the bias, the FDDA and NOFDDA differences are 
smaller with no clear signal that FDDA was better than the NOFDDA. The trends 
in the errors for FDDA and NOFDDA for both domains are very similar throughout 
the entire time domain with no significant differences attributable to grid spacing. 

Figure 9 is a time-series display of the 10-m-AGL V’s ME and RMSE errors for 
the Dumais 5.25- and 1.75-km WRE–N for Case 4. 
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Fig. 9 Bias and RMSE errors for WRE–N with and without FDDA for 10-m-AGL V (m/s) 

The error values were computed from all matched pairs available for each hour, 
which ranged from 231 to 267 over the 18-h time domain of the model for the  
5.25-km domain and 199 to 237 for the 1.75-km domain. The differences between 
the bias and RMSE for the WRE–N with FDDA and NOFDDA vary between nil 
to moderate over the model’s time domain for both domains. The largest differences 
for both errors begin near the end of the assimilation phase and end at 
approximately 2300 UTC. For both domains, the differences in RMSE—nil at 1200 
UTC, when the WRE–N is effectively the same as the GFS at the beginning of the 
assimilation phase—show the FDDA performs better than NOFDDA for most of 
the model’s run. For the bias, the FDDA and NOFDDA differences are smaller with 
no clear signal that FDDA was better than the NOFDDA through 1700 UTC; but, 
afterwards, there appears to be a clearer signal that the FDDA performed better. 
The trends in the errors for FDDA and NOFDDA for both domains are very similar 
throughout the entire time domain with no significant differences attributable to 
grid spacing. 

4.3 Value Added by Decreased Grid Spacing 

The next step of our analysis was to examine the error differences between larger 
and smaller grid spacing for the WRE–N with FDDA. This was accomplished by 
scoring each of the 3 grids using the same observations present in the innermost 
domain for the runs produced by Dumais and Passner for the same case, which was 
Case 1, to see any differences that are attributable to grid spacing.  
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Figure 10 is a time-series display of the 2-m-AGL TMP’s ME and RMSE errors for 
the Dumais and Passner runs for Case 1. 

 

Fig. 10 Bias and RMSE errors for the 3 grids for Dumais and Passner WRE–N with FDDA 
for 2-m-AGL TMP (K) 

The error values were computed from all matched pairs available for each hour in 
the innermost domain, which ranged from 215 to 238 over the 18-h time domain of 
the model for the Passner WRE–N and 625 to 733 for the Dumais WRE–N. For the 
Passner WRE–N the differences among the 3 grids are very small to nil for both 
bias and RMSE over the model’s entire time domain. There is a distinct sinusoidal 
trend in bias from near zero to large positive values, which is reflected in the trend 
of the RMSE errors. The first maximum value for both errors occurs upon 
completion of the assimilation phase, which is followed by a trend toward lower-
magnitude errors between 2100 and 2300 UTC, finally returning to larger errors by 
0000 UTC until the end of the run. For the Dumais WRE–N, the differences among 
the grids are also very small to nil for bias, but not for RMSE. For RMSE—except 
for the beginning of the assimilation phase—there are differences in the error 
magnitude among the 3 grids with the smallest spacing having the smallest error 
and the largest spacing having the largest error, which is the expected relationship. 
The sinusoidal trend in RMSE seen on the Passner errors is somewhat reflected in 
the Dumais RMSE errors, except the amplitude for the RMSE errors is considerably 
reduced with the second minimum absent even though it is present in the trend of 
the bias errors. 

Figure 11 is a time-series display of the 2-m-AGL DPT’s ME and RMSE errors for 
the Dumais and Passner runs for Case 1. 
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Fig. 11 Bias and RMSE errors for the 3 grids for Dumais and Passner WRE–N with FDDA 
for 2-m-AGL DPT (K) 

The error values were computed from all matched pairs available for each hour in 
the innermost domain, which ranged from 191 to 211 over the 18-h time domain of 
the model for the Passner WRE–N and 542 to 597 for the Dumais WRE–N. For the 
Passner WRE–N the differences among the 3 grids for DPT are very small to nil 
for both bias and RMSE over the model’s entire time domain, which is the same as 
was seen for TMP. There is a less distinct sinusoidal trend in bias that is somewhat 
centered on zero with variations above and below. The same pattern is not matched 
in the trend of the RMSE errors. The first maximum value for RMSE occurs upon 
completion of the assimilation phase, which is followed by a trend toward lower-
magnitude errors between 2100 and 2300 UTC, then continues a decreasing trend 
over the remainder of the period. For bias, the first maximum occurs a few hours 
later, followed by a return to near zero bias for the remainder of the period. For the 
Dumais WRE–N, the differences among the grids are also very small to nil for bias 
and RMSE. For bias and RMSE, there is also a sinusoidal pattern with the first 
maximum for RMSE occurring a few hours earlier than that for bias, similar to the 
Passner errors. 

Figure 12 is a time-series display of the 10-m-AGL U’s ME and RMSE errors for 
the Dumais and Passner runs for Case 1. 
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Fig. 12 Bias and RMSE errors for the 3 grids for Dumais and Passner WRE–N with FDDA 
for 10-m-AGL U (m/s) 

The error values were computed from all matched pairs available for each hour in 
the innermost domain, which ranged from 102 to 122 over the 18-h time domain of 
the model for the Passner WRE–N and 212 to 252 for the Dumais WRE–N. For the 
Passner WRE–N the differences among the 3 grids for U are very small to nil for 
both bias and RMSE over the model’s entire time domain, which is the same as was 
seen for TMP. There is a sinusoidal trend in bias that is somewhat centered on –1.0 
with variations above and below. The first maxima for RMSE and bias do not 
coincide, with the one for RMSE occurring about 2 hours before that for bias. The 
first maxima values for bias and RMSE occur a few hours after the completion of 
the assimilation phase. For the Dumais WRE–N, the differences among the grids 
are also very small to nil for bias and RMSE. For bias and RMSE, there is also a 
sinusoidal pattern with the first maximum for RMSE occurring 2 hours earlier than 
that for bias, similar to the Passner errors. 

Figure 13 is a time-series display of the 10-m-AGL V’s ME and RMSE errors for 
the Dumais and Passner runs for Case 1. 
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Fig. 13 Bias and RMSE errors for the 3 grids for Dumais and Passner WRE–N with FDDA 
for 10-m-AGL V (m/s) 

The error values were computed from all matched pairs available for each hour in 
the innermost domain, which ranged from 102 to 122 over the 18-h time domain of 
the model for the Passner WRE–N and 212 to 252 for the Dumais WRE–N. For the 
Passner WRE–N the differences among the 3 grids for U are very small to nil for 
both bias and RMSE over the assimilation phase and a few hours into the forecast 
period. Afterward, there appears to be more separation in the errors among the 3 
grids, with the lowest value being that of the 9-km grid and the highest being that 
of the 1-km grid, which is the opposite of the expected relationship. There is a 
sinusoidal trend in RMSE and bias, with the first maxima occurring just after the 
completion of the assimilation phase. For the Dumais WRE–N, the differences 
among the grids are also very small to nil for bias and RMSE over the model’s 
entire time domain. For bias and RMSE, there is also a sinusoidal pattern, with the 
first maximum for RMSE and bias coincident in the hours following the 
assimilation phase, similar to the pattern of the Passner errors. 

4.4 Performance Comparison of 2 WRE–N Configurations 

The next step of our analysis was to compare the performance of 2 different 
configurations of the 1-km WRE–N that were run over the same domain. The 2 
configurations used were those run by Passner and Reen, with FDDA in both cases. 
Table 4 describes the differences in configuration settings of the 2 models. 
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Table 4 WRE–N configuration differences 

Setting/configuration Reen Passner 
Obs-nudging radius 180, 90, 45 90, 45, 20 
Microphysics option 4 8 
Obs-weighting function 8E-4 4E-4 
Model top 50hPa 10hPa 
Feedback on (Y/N?) No Yes 

 
Figure 14 is a time-series display of the 2-m-AGL TMP’s ME and RMSE errors for 
the Reen and Passner 1-km runs for Cases 1 and 2. 

 

Fig. 14 Bias and RMSE errors for the Reen and Passner 1-km WRE–N with FDDA for  
2-m-AGL TMP (K) 

The TMP error values were computed from all matched pairs available for each 
hour in the innermost domain, which ranged from 216 to 238 over the 18-h time 
domain of the models for Case 1 and 189 to 243 for Case 2. For Case 1, both models 
have different error values over most of the model’s time domain, with the 
exception of the first few hours of the assimilation phase. They both show trends 
that have similarities at certain times. At other times, the events that occur in the 
trend appear displaced in time between one model and the other. An example of a 
displaced event is the first maximum in RMSE, which occurs between 1800 and 
2100 UTC for the Passner WRE–N. The Reen WRE–N appears to have the same 
event, which occurs between 2000 and 2300 UTC. This event also occurs in the 
bias trend for both models with a similar displacement. Both models also show a 
second maximum in the trend of both errors at 0200 UTC. For Case 2, the values 
of the errors for both models are closer and the trends are very similar with no 
significant displacement. Each model has periods when its errors are of less 
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magnitude than the other model’s, but there does not appear to be a consistent 
pattern with one model having smaller errors than the other. Without the benefit of 
additional information about the specific temporal changes in the atmospheric 
conditions over the domain, it is difficult to associate such changes with the error 
trends. However, the conditions in Case 1 involved more synoptic forcing from a 
frontal system and active precipitation with attendant upper-level dynamics than 
those in Case 2, which had quiescent conditions that may have contributed to a 
more sinusoidal pattern than in the trends for Case 1. 

Figure 15 is a time-series display of the 2-m-AGL DPT’s ME and RMSE errors for 
the Reen and Passner 1-km runs for Cases 1 and 2. 

 

Fig. 15 Bias and RMSE errors for the Reen and Passner 1-km WRE–N with FDDA for  
2-m-AGL DPT (K) 

The DPT error values were computed from all matched pairs available for each 
hour in the innermost domain, which ranged from 191 to 211 over the 18-h time 
domain of the models for Case 1 and 164 to 208 for Case 2. For Case 1, both models 
show different error values over the course of the 18-h time domain with 
occurrences of a maximum in the magnitude of both errors, similar to that observed 
in the TMP error trend, following the assimilation phase. There is displacement of 
the maxima for RMSE and bias between both models, similar to that observed for 
TMP, with the Passner model’s maximum occurring before that of the Reen model. 
Each model has periods when its errors are of less magnitude than the other model’s 
but there does not appear to be a consistent pattern with one model having smaller 
errors than the other. For Case 2, the values of the errors for both models are similar 
to those of Case 1 and the trends are very similar with no significant displacement 
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between the maxima of the 2 models, as was the case for TMP. Each model has 
periods when its errors are of less magnitude than the other model’s but there does 
not appear to be a consistent pattern with one model having smaller errors than the 
other.  

Figure 16 is a time-series display of the 10-m-AGL U’s ME and RMSE errors for 
the Reen and Passner 1-km runs for Cases 1 and 2. 

 

Fig. 16 Bias and RMSE errors for the Reen and Passner 1-km WRE–N with FDDA for  
10-m-AGL U (m/s) 

The U error values were computed from all matched pairs available for each hour 
in the innermost domain, which ranged from 103 to 123 over the 18-h time domain 
of the models for Case 1 and 107 to 121 for Case 2. For Case 1, both models show 
different error values over the course of the 18-h time domain with occurrences of 
a maximum in the magnitude both errors, similar to that observed in the TMP and 
DPT error trends, following the assimilation phase. It is noteworthy that, unlike for 
TMP and DPT, the U errors of both models are nearly identical during the 
assimilation phase. Regarding the maximum following the assimilation phase, there 
is no displacement of the maxima (in absolute value for the bias) between both 
models. For Case 2, the values of the errors for both models are closer and the trends 
are very similar with no significant displacement. There is a noteworthy shift of the 
timing of the postassimilation phase’s maximum, placing it at approximately 2300 
to 0000 UTC relative to the timing of the same event for TMP and DPT. Each 
model has periods when its errors are of less magnitude than the other model’s, but 
there does not appear to be a consistent pattern over both cases with one model 
having smaller errors than the other. 
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Figure 17 is a time-series display of the 10-m-AGL V’s ME and RMSE errors for 
the Reen and Passner 1-km runs for Cases 1 and 2. 

 

Fig. 17 Bias and RMSE errors for the Reen and Passner 1-km WRE–N with FDDA for  
10-m-AGL V (m/s) 

The V error values were computed from all matched pairs available for each hour 
in the innermost domain, which ranged from 103 to 123 over the 18-h time domain 
of the models for Case 1 and 107 to 121 for Case 2. For Case 1, both models show 
different error values over the course of the 18-h time domain with occurrences of 
a maximum in the magnitude both errors, similar to that observed in the TMP and 
DPT error trends, following the assimilation phase. It is noteworthy that, unlike for 
TMP and DPT, the V errors of both models are nearly identical during the 
assimilation phase. Regarding the maximum following the assimilation phase, 
unlike U, there is significant displacement of the maxima between both models. 
The maximum for the Passner model occurs approximately 2 h earlier than that of 
the Reen model. For Case 2, values of the errors for both models are significantly 
closer and the trends are very similar with no apparent maximum event following 
the assimilation phase. Each model has periods when its errors are of less 
magnitude than the other model’s, but there does not appear to be a consistent 
pattern over both cases with one model having smaller errors than the other. 
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4.5 Performance Comparison: Dumais WRE–N with FDDA vs. the 
GFS 

The next step of our analysis was to evaluate the performance of the Dumais WRE–
N with FDDA against that of the GFS model using the results from Cases 2 and 4. 
The analysis could only be performed at 3-h intervals because the output of the GFS 
is every 3 h. In addition, the GFS does not provide the DPT variable, so RH was 
used instead. In this case, the scoring was accomplished over only the observations 
in the innermost domain for each of the 4 grids, as follows: 55-km—GFS;  
15.75-km—WRE–N; 5.25-km—WRE–N; and 1.75-km—WRE–N. 

Figure 18 is a time-series display of the 2-m-AGL TMP’s ME and RMSE errors for 
the Dumais WRE–N with FDDA and the GFS for Cases 2 and 4. 

 

Fig. 18 Bias and RMSE errors for the Dumais WRE–N with FDDA and the GFS for 2-m-
AGL TMP (K) 

The TMP error values were computed from all matched pairs available for each 
hour in the innermost domain, which ranged from 601 to 730 over the 18-h time 
domain of the models for Case 2 and 628 to 760 for Case 4. For Case 4, the TMP 
errors at the beginning of the assimilation phase are identical because, on 
initialization, the GFS model supplies the background field that is interpolated onto 
the WRE–N grid for the first model’s lead time (Hour 0). The trend in both errors 
shows the WRE–N’s performance is superior at nearly all hours except for the bias 
at 0000 UTC. For Case 2, the superior performance of the WRE–N is not as 
significant until late in the forecast period, at 0300 UTC and beyond. There is even 
a period of 2100–0000 UTC when the bias of the GFS is smaller than that of the 
WRE–N.  
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Figure 19 is a time-series display of the 2-m-AGL RH’s ME and RMSE errors for 
the Dumais WRE–N with FDDA and the GFS for Cases 2 and 4. 

 

Fig. 19 Bias and RMSE errors for the Dumais WRE–N with FDDA and the GFS for 2-m-
AGL RH (in %) 

The RH error values were computed from all matched pairs available for each hour 
in the innermost domain, which ranged from 538 to 649 over the 18-h time domain 
of the models for Case 2 and 559 to 686 for Case 4. For Case 4, the RH errors at 
the beginning of the assimilation phase are all identical because, on initialization, 
the GFS model supplies the background field that is interpolated onto the WRE–N 
grid for the first model’s lead time (Hour 0). The trend in both errors shows the 
WRE–N’s performance is superior for the 3 model hours between 1800 and 0000 
UTC. For Case 2, the superior performance of the WRE–N is not as apparent until 
late in the forecast period, at 0300 UTC and beyond. There is even a period of 
1800–0000 UTC when the GFS errors are smaller than those of the WRE–N. 

Figure 20 is a time-series display of the 10-m-AGL U’s ME and RMSE errors for 
the Dumais WRE–N with FDDA and the GFS for Cases 2 and 4. 
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Fig. 20 Bias and RMSE errors for the Dumais WRE–N with FDDA and the GFS for  
10-m-AGL U (m/s) 

The U error values were computed from all matched pairs available for each hour 
in the innermost domain, which ranged from 211 to 228 over the 18-h time domain 
of the models for Case 2 and 199 to 237 for Case 4. For Case 4, the U errors at the 
beginning of the assimilation phase are nearly identical because, on initialization, 
the GFS model supplies the background field that is interpolated onto the WRE–N 
grid for the first model’s lead time (Hour 0). The trend in the RMSE error shows 
the WRE–N’s performance is superior for only 2 model hours between 1800 and 
2100 UTC. For the bias, the superiority of the WRE–N is more significant over 
most of the 18-h period. For Case 2, the superior performance of the WRE–N is not 
as apparent until late in the forecast period, at 0000 UTC and beyond. For RMSE, 
there is even a period from 1200 to 2100 UTC when the GFS errors are smaller 
than those of the WRE–N.  

Figure 21 is a time-series display of the 10-m-AGL V’s ME and RMSE errors for 
the Dumais WRE–N with FDDA and the GFS for Cases 2 and 4. 
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Fig. 21 Bias and RMSE errors for the Dumais WRE–N with FDDA and the GFS for 10-m-
AGL V (m/s) 

The V error values were computed from all matched pairs available for each hour 
in the innermost domain, which ranged from 211 to 228 over the 18-h time domain 
of the models for Case 2 and 199 to 237 for Case 4. For Case 4, the V errors at the 
beginning of the assimilation phase are identical because, on initialization, the GFS 
model supplies the background field that is interpolated onto the WRE–N grid for 
the first model’s lead time (Hour 0). The trend in the RMSE error shows no clear 
superiority of the WRE–N’s performance. After 2100 UTC, the RMSE of the GFS 
is slightly smaller than that of the WRE–N. For the bias, the superiority of the 
WRE–N is more evident in the period of 1800–0300 UTC. For Case 2, in terms of 
the RMSE, the superior performance of the WRE–N is not as apparent over the 
entire 18-h period. For bias, the WRE–N clearly performs better than the GFS for 
nearly the entire 18-h period. 

5. Conclusions and Final Comments 

From our analysis of traditional, grid-to-point, domain-level error statistics, we 
have found the FDDA adds value to the performance of the WRE–N—but the 
added value is not consistent or present for all variables, model lead times, and 
case-study days. From the results analyzed, the increased skill of the WRE–N at 
smaller grid spacing is not evident. This may be due to the difficulty in scoring, 
which occurs when there is a requirement for the exact match between the point 
observations and the forecast grid values. Often, forecasts with smaller grid 
spacing, despite their ability to replicate atmospheric features with more detail, 
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have poorer error statistics than forecasts with larger grid spacing (Ebert 2008). 
From the comparison of 2 different model configurations over the same domain, 
the results analyzed did not show the superiority of one configuration over the 
other. The statistics varied for both configurations depending on the lead time, the 
variable, and the weather situation. From the comparison of the WRE–N and the 
GFS, the results show that the WRE–N’s performance is superior to the GFS’s for 
varying periods of time over the course of the model’s time domain, but the 
superiority is not consistent and there are times when the GFS scores better than 
the WRE–N. 

The results of the analysis show strong temporal variability in the errors. This 
variability is characterized by maxima “events” occurring for each different WRE–
N configuration at differing times and appear as displacements in time when 
compared on the same time-series plot. The reasons for these phase differences is 
not clear but may be due to the effect of temporal changes in the synoptic weather 
conditions occurring in the domain. More investigation is needed with numerous 
cases to explain the causes of these events and the influence of the weather 
conditions on them. In designing a subsequent assessment project to identify the 
underlying causes for the observed errors as well as model strengths and 
weaknesses, consideration must be given to the use of other verification methods. 

Besides the difficulties previously described in assessing the true skill of high-
resolution models, grid-to-point methods provide no information about occurrences 
of “near misses” that suggest a forecast of some quality or occurrences of more 
complete misses owing to a poor forecast. The challenge is to employ techniques 
that evaluate the ability of the model to replicate the features themselves, albeit with 
spatial displacement, in addition to the more traditional approaches. To this end, 
researchers have developed spatial-verification techniques that reveal more about 
the ability of the model to predict spatial features (Jolliffe and Stephenson 2011).  

Finally, a Geographic Information System (not extensively used in atmospheric 
sciences) should be exploited for its ability to contextualize and analyze geospatial 
information—terrain type/slope, land-use effects, and other spatial and temporal 
variables—as explanatory metrics in model assessments (Smith et al. 2015; Smith 
et al. 2016a; Smith et al. 2016b). This technique has demonstrated considerable 
promise as an important new tool that, in addition to the traditional and non-
traditional methods previously described, offers a comprehensive approach to 
model verification. 

  



 

Approved for public release; distribution is unlimited. 
28 

6. References 

Brandt J, Dawson L, Johnson J, Kirby S, Marlin D, Sauter D, Shirkey R, Swanson 
J, Szymber R, Zeng S. Second generation weather impacts decision aid 
applications and web services overview. White Sands Missile Range (NM); 
Army Research Laboratory (US); 2013 Jul. Report No.: ARL-TR-6525. 

Casati B, Wilson LJ, Stephenson DB, Nurmi P, Ghelli A, Pocernich M, Damrath 
U, Ebert EE, Brown BG, Mason S. Forecast verification: current status and 
future directions. Meteo App. 2008;15:3–18. 

Chen F, Dudhia J. 2001a. Coupling an advanced land surface-hydrology model 
with the Penn State-NCAR MM5 modeling system. Part II: preliminary model 
validation. Mon Wea Rev. 2001;129:587–604. 

Chen F, Dudhia J. 2001b. Coupling an advanced land surface-hydrology model 
with the Penn State-NCAR MM5 modeling system. Part I: model 
implementation and sensitivity. Mon Wea Rev. 2001;129:569–585. 

Daniels TS, Moninger WR, Mamrosh RD. Tropospheric airborne meteorological 
data reporting (TAMDAR) overview. Preprints, 10th Symposium on 
Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and 
Land Surface; 2016 Sep 1; Atlanta (GA): American Meteorological Society 
[accessed 2016 Aug 2].  

De Pondeca MSFV, Manikin GS, DiMego G, Benjamin SG, Parrish DF, Purser RJ, 
Wu WS, Horel JD, Myrick DT, Lin Y, Aune RM, Keyser D, Colman B, Mann 
G, Vavra J. The real-time mesoscale analysis at NOAA’s National Centers for 
Environmental Prediction: current status and development. Wea Forec. 
2011;26:593–612. 

Deng A, Stauffer D, Gaudet B, Dudhia J, Hacker J, Bruyere C, Wu W, 
Vandenberghe F, Liu Y, Bourgeois A. Update on the WRF-ARW end-to-end 
multi-scale FDDA system. Paper presented at: 10th WRF Users' Workshop, 
National Center for Atmospheric Research; Paper No.: 1.9. 2009 Jun 23–26; 
Boulder (CO). 

Dudhia J. Numerical study of convection observed during the Winter Monsoon 
Experiment using a mesoscale two-dimensional model. J Atmos Sci. 
1989;46:3077–3107.  



 

Approved for public release; distribution is unlimited. 
29 

Dumais R, Kirby S, Flanigan R. Implementation of the WRF four-dimensional data 
assimilation method of observaion nudging for use as an ARL weather running 
estimate-nowcast. White Sands Missile Range (NM): Army Research 
Laboratory (US); 2013 Jun. Report No.: ARL-TR-6485. 

Dumais RE, Reen BP. Data assimilation techniques for rapidly relocatable weather 
research and forecasting modeling. White Sands Missile Range (NM): Army 
Research Laboratory (US); 2013 Jun. Report No.: ARL-TN-0546. 

Dumais RE Jr, Henmi T, Passner J, Jameson T, Haines P, Knapp D. A mesoscale 
modeling system developed for the U.S. Army. White Sands Missile Range 
(NM): Army Research Laboratory (US); 2004 Apr. Report No.: ARL-TR-
3183. 

Ebert E, Wilson L, Weigel A, Mittermaier M, Nurmi P, Gill P, Göber M, Joslyn S, 
Brown B, Fowler T, Watkins A. Progress and challenges in forecast 
verification. Meteo App. 2013;20(2):130–139. 

Ebert E. Fuzzy verification of high resolution gridded forecasts: a review and 
proposed framework. Meteo App. 2008;15:51–64. 

[EMC] Environmental Modeling Center. The GFS atmospheric model. NCEP 
Office Note No.: 442; 2003. 

Google Earth. Mountain View (CA); 2016 [accessed 2016 Aug 24]. 
http://maps.google.com/help/terms_maps.html. 

Hong SY, Dudhia J, Chen S-H. A revised approach to ice microphysical processes 
for the bulk parameterization of clouds and precipitation. Mon Wea Rev. 
2004;132:103–120. 

Janjić ZI. The step-mountain eta coordinate model: further developments of the 
convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev. 
1994;122:927–945. 

Jolliffe IT, Stephenson DB, editors. Forecast verification: a practitioner's guide in 
atmospheric science. 2nd ed. Hoboken (NJ): John Wiley and Sons; 2011. 

Kain JS. The Kain-Fritsch convective parameterization: an update. J App Meteo. 
2004;43:170–181. 

Liu Y, Bourgeois A, Warner T, Swerdlin S, Hacker J. Implementation of 
observation-nudging based FDDA into WRF for supporting ATEC test 
operations. Proceedings of the 6th WRF/15th MM5 Users' Workshop, National 
Center for Atmospheric Research; 2005 Jun 27; Boulder (CO). 



 

Approved for public release; distribution is unlimited. 
30 

Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. Radiative transfer for 
inhomogeneous atmospheres: RRTM, a validated correlated-k model for the 
longwave. J Geoph Res Atmos. 1997;102:16663–16682. 

[NCAR] National Center for Atmospheric Research. Model evaluation tools 
version 4.1 (METv4.1), user's guide 4.1. Boulder, CO; 2013 May. 

[NOAA] Meteorological assimilation data ingest system (MADIS). College Park 
(MD): National Oceanic and Atmospheric Administration. [accessed 2016 Jul 
27]. http://madis.noaa.gov. 

[NRC] National Research Council. When weather matters: science and service to 
meet critical societal needs. Washington (DC): The National Academies Press; 
2010. 

Raby JW. Application of a fuzzy verification technique for assessment of the 
Weather Running Estimate–Nowcast (WRE–N) model. White Sands Missile 
Range (NM): Army Research Laboratory (US); 2016 Oct. Report No.: ARL-
TR-7849 

Raby JW, Cai H. Verification of spatial forecasts of continuous meteorological 
variables using categorical and object-based methods. White Sands Missile 
Range (NM): Army Research Laboratory (US); 2016 Aug. Report No.: ARL-
TR-7751. 

Raby J, Passner J, Vaucher G, Raby Y. Performance comparison of high resolution 
weather research and forecasting model output with north american mesoscale 
model initialization grid forecasts. White Sands Missile Range (NM): Army 
Research Laboratory (US); 2012 May. Report No.: ARL-TR-6000. 

Reen BP, Schmehl KJ, Young GS, Lee JA, Haupt SE, Stauffer DR. Uncertainty in 
contaminant concentration fields resulting from atmospheric boundary layer 
depth uncertainty. J App Meteo Clim. 2014;53:2610–2626. 

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang  
X-Y, Wang W, Powers JG. A description of the advanced research WRF 
version 3. Boulder (CO): National Center for Atmospheric Research (US); 
2008 Jun. NCAR Technical Note No.: TN–475+STR. 

Smith JA, Foley TA, Raby JW, Reen B. Investigating surface bias errors in the 
Weather Research and Forecasting (WRF) model using a Geographic 
Information System (GIS). White Sands Missile Range (NM): Army Research 
Laboratory (US); 2015 Feb. Report No.: ARL-TR-7212. 



 

Approved for public release; distribution is unlimited. 
31 

Smith JA, Foley TA, Raby JW, Reen BP, Penc RS. 2016a. Case study applying 
GIS tools to verifying forecasts over a domain. Paper presented at: 96th annual 
American Meteorological Society Meeting, 23rd Conference on Probability 
and Statistics in the Atmospheric Sciences; 2016 Jan 10–14; New Orleans 
(LA). Paper No.: 13.3. 

Smith JA, Raby JW, Foley TA, Reen BP, Penc RS. 2016b. Case study applying 
GIS tools to verifying forecasts over a mountainous domain. Paper presented 
at: 17th Mountain Meteorology Conference, American Meteorological 
Society. 2016 Jun 27–July 1; Burlington (VT). Paper No.: 2.5. 

Stauffer DR, Seaman NL. Multiscale four-dimensional data assimilation. J App 
Meteo. 1994;33:416–434. 

Wilks DS. Statistical methods in the atmospheric sciences. 3rd ed. Oxford (UK): 
Academic Press, 2011. 

 

  



 

Approved for public release; distribution is unlimited. 
32 

List of Symbols, Abbreviations, and Acronyms  

ACARS Aircraft Communications, Addressing, and Reporting System 

AGL  above ground level 

ARL  US Army Research Laboratory 

ARW  Advanced Research Weather Research and Forecasting model 

DPT   dew-point temperature 

FDDA  Four-Dimensional Data Assimilation 

GFS  Global Forecast System 

GRIB  gridded binary file 

hPa  hectopascal 

K  degrees Kelvin 

MADIS Meteorological Assimilation Data Ingest System 

ME  mean error  

MET  Model Evaluation Tools 

MYJ  Mellor–Yamada–Janjic 

MyWIDA My Weather Impacts Decision Aid 

NCAR  National Center for Atmospheric Research 

NCEP  National Centers for Environmental Prediction 

NOFDDA “no FDDA” 

NWP  Numerical Weather Prediction 

PBL  planetary boundary layer 

RH  relative humidity 

RMSE  root-mean-square error 

RRTM  Rapid Radiative Transfer Model 

RTMA  Real-Time Mesoscale Analysis 

TAMDAR Tropospheric Airborne Meteorological Data Reporting 

TMP  temperature 
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U  u-component wind 

UTC  coordinated universal time 

V  v-component wind 

WRE–N Weather Running Estimate–Nowcast 

WRF  Weather Research and Forecasting 

WRF–ARW Weather Research and Forecasting, Advanced Research WRF 
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